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Abstract. Within a real space renormalisation group approach, we study the phase diagram 
and  the universality classes of the three-state chiral clock model in a self-dual planar 
hierarchical lattice. We find that the chiral field A is relevant at the pure Potts critical 
point with a crossover exponent 6 = 0.32. The critical line which separates the ferromagnetic 
phase from the non-ferromagnetic ones is characterised by a multicritical I Lifshitz) point 
located at i K ,  A )  = (1.452, 0.382 I. The ferromagnetic phase appears to be divided into two 
regions by a wetting line which we also locate numerically. The various critical lines and  
points of the phase diagram are believed to be excellent approximations for the square 
lattice. 

1. Introduction 

Since the first observations of modulated structures in ferroelectric and magnetic 
materials in the late 1950s and  early 1960s [l], great interest has arisen in the study 
of statistical models which might exhibit such modulations. From the theoretical point 
of view, two models are basically studied, namely, the axial next-nearest-neighbour 
Ising ( A N N N I )  model and  the chiral clock model (sometimes referred to as ‘asymmetric 
clock’, ‘chiral Potts’ and  ‘helical Potts’ model). The Hamiltonians of both models 
contain competing interactions which give rise to spatially modulated structures. In  
the chiral clock model the competition is provided by chiral or helical interactions 
along a given lattice axis, while in the A N N N I  model it is a nearest-neighbour ferromag- 
netic coupling competing with a next-nearest-neighbour antiferromagnetic one along 
one lattice direction which causes the modulations. For a survey of the present state 
of the art on these two models the reader is referred to the recent reviews by Yeomans 
[2] and by Selke [3]. 

The chiral clock model can serve as a prototype for the melting of a commensurate 
adsorbed phase [4]; its experimental realisation in two dimensions is provided by 
dissociated hydrogen on F e ( l l 0 )  [5]. No similar physical system is known to be 
described by this model in three dimensions. We focus in the present paper on the 
controversial two-dimensional, three-state chiral clock model. At d = 2 it might show 
a floating incommensurate phase above the low-temperature commensurate phases 
[6-81. However, a considerable controversy remains over whether there is a Lifshitz- 
type multicritical point or  whether the floating phase extends down to a vanishing 
chiral field A [7-111. Huse and Fisher [ l l ]  suggest a Lifshiftz point which governs 
the transition from the ordered (ferromagnetic) phase to the disordered (paramagnetic) 
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phase for A such that 0 < A s A L .  Although Everts and  Roder cannot definitely exclude, 
in a recent work [ 121, the possibility that the floating phase extends down to A = 0, 
they also suggest the existence of a Lifschitz point at finite chirality. The present results 
give support to this possibility. 

Here we study the two-dimensional, three-state chiral clock (ferromagnetic) model 
in a high-order Wheatstone-bridge hierarchical lattice within a real space renormalisa- 
tion group ( RG)  framework which preserves the two-site correlation function. The 
central goal of this work is to investigate whether chirality introduces a new universality 
class (as suggested by Huse and  Fisher) as well as to numerically determine various 
critical lines and  points. The present results are exact for the hierarchical lattice, and  
approximate for the square lattice (the approximation being, however, excellent for 
the phase diagram). 

2. Model and formalism 

The q-state chiral clock model is described by the Hamiltonian 

where the sum runs over all pairs of nearest-neighbouring sites of a given array, 
K = J /  k ,  T > 0, R,, is the unit vector starting from the site i to site j ,  and { n , }  are spin 
variables which can take the values n, = 0, 1, 2, . . . , q - 1. The parameter A 5 0 might 
cause a tendency for the phase angle 27rn,/q to have a continuous rotation as a function 
of the position along the A direction. This competes with the restriction that the phase 
angle must be discrete and  this competition leads to commensurate-incommensurate 
transitions. For q = 2  the chiral Hamiltonian is, for arbitrary A, equivalent to an  
(anisotropic) Ising model at  zero field. When A = O  and q = 3  the model reduces to 
the standard ferromagnetic three-state Potts model. From now on we will consider 
planar lattices and  A = Ay  ̂where y  ̂ is the unit vector along a direction which is chosen 
once for ever. 

The ground state of the q = 3  model is ferromagnetic ( n ,  = n, for all sites) when 
/AI < f .  For f < A < the ground state presents a ferromagnetic configuration along the 
x axis and  right-handed chiral configuration along the y direction. To be more precise 
the spins form, along the y axis, the pa t te rn . .  .01201201 . . . . This ground state is 
commensurate with the lattice and the spatially modulated order has a period of p = 3 
lattice constants. A = ;  is a multiphase point [13] where the ferromagnetic state and  
any possible right-handed chiral sequence share the same energies. The ground state 
is then infinitely degenerated. 

At A = 0 the Hamiltonian (2.1) has a symmetry Sj, i.e. it is invariant under any 
permutation of the labellings of the three spin states. For A # 0 the model has a lower 
symmetry, namely, Z , ,  being invariant only under cyclic permutations of the spin 
labels. On the other hand, the partition function is invariant under the following 
transformations. 

(i) A + - A  (2.2) 

n , +  -n , (mod 3) (2.3) 

if one makes the identifications 

that is, if we change the right-handed for a left-handed chiral ordering. 
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( i i )  A + A + m  ( 2 . 4 )  
where m is an arbitrary integer, since one transforms each spin n, to 

n, + ( n ,  + y , m )  mod 3 ( 2 . 5 )  
where y ,  is the coordinate of the site i along the y axis. 

invariant under the transformation 
Combining these two symmetry operations with m = 1, the partition function is 

A + l - A  ( 2 . 6 )  

Then the phase boundaries are invariant under reflection about the line A = i and we 
only need to analyse the range O s  A s ; .  However, the phases themselves must be 
identified differently within the regimes O <  A < :  and $ < A S  1. Indeed, from ( 2 . 7 )  we 
have to take into account the correspondence between ferromagnetic ( A  < i) and chiral 
( A  > i) ground states. 

We shall now address the chiral Hamiltonian ( 2 . 1 )  on the hierarchical lattice 
generated by the cell shown in figure l ( a ) .  The choice of this cell has been made in 
order to simulate the square lattice. To do so two features seem essential: the self-duality 
of the square lattice, and the preservation, under renormalisation, of the ground states 
of the system. The cell we have selected is the smallest Wheatstone-bridge-type cluster 
with these properties. The renormalisation transformation between the cell of figure 
1 ( a )  and the simple bond shown in figure 1 ( b )  is defined by imposing the equality 

n, + (-n! +y , )  mod 3. (2.7) 

exp[-%’(K’, A ’ ) + c ]  = 1 exp[-R(K, A)]. ( 2 . 8 )  
n , ,  . i i 1 4  

After some algebraic work one obtains the following recursion relations 

( 2 . 9 )  
( 2 . 1 0 )  

(2 .11)  

Where 4,,, 4, and & are the analytical expressions for the sums in the right-hand side 
of equation (2.8), with the terminal spins fixed in ( n , ,  nz) = (0, O ) ,  ( 1 , O )  and ( 2 , O )  
respectively. Each one of such expressions involves the counting of 312 configurations 
which were summed up through an algebraic PLi  computer program. The RG flows 
(determined by (2 .10)  and (2.11)) in the ( K ,  A )  space will provide the phase diagram 
and the thermal critical exponents of the system. 

( a )  ( b )  

Figure 1. Cells used to construct the renormalisation group; 0 and 3 respectively denote 
internal and terminal sites. ( a )  b = 4 graph; ( b )  b’ = 1 graph. 
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3. Results 

The recursion relations (2.10) and (2.11) present an unstable fixed point at A = O  and 
K = $ l n ( J 3  + 1) which corresponds to the three-state Potts ferromagnetic critical point. 
Its critical exponents are vT= 0.975 and vA = 3.052; consequently the crossover exponent 
is 4 = vT/ vA = 0.319. This value is to be compared with the den Nijs value 4 = [ 141 
and the series value [15] 4 =0.19*0.06 for the square lattice. There is a second 
unstable fixed point at A = and K - '  = 0. Also a semi-stable fixed point is present at 
2 2 0 . 1 1 3  ( K  = 1.452) and Az0.382, where the convenient variable 2 is defined as 
2 =exp(-3K/2) .  For this fixed point we have the critical exponent ~ ~ ~ 0 . 9 4 9 .  This 
point is to be identified with a Lifshitz-type fixed point and our estimate for its ( K ,  A )  
is consistent with reference [7] which suggests K = 1.053 and A E [0.4, 0.4251, and with 
reference [8] which suggests ( K ,  A ) =  (1.111,0.4*0.03). Although in our RG approach 
we have not looked for the floating-paramagnetic phase transition line coming out 
from the fixed point we have obtained, we believe that this line exists in the hierarchical 
lattice (as it does in the square lattice) and, therefore, this point should be interpreted 
as a Lifshitz fixed point. In  1981, Huse [16] studied this model using the Migdal- 
Kadanoff renormalisation method which is exact for a diamond hierarchical lattice. 
For dimension d = 2 and rescaling factor b = 2 ,  Huse finds a three-state Potts critical 
point with exponents vT = 1.20, vA = 2.38 and crossover exponent 4 = 0.5; all other 
points on the boundary of the ferromagnetic phase are attracted to a new semi-stable 
critical point with exponent v = 1.01. Our results are qualitatively consistent with those 
of Huse. 

In order to complete the analysis of the fixed points and of the RG flow we have 
considered the asymptotic form of the recursion relations (2.10) and (2.11) when 2 
goes to zero ( T  + 0). The leading term involves the ground and first excited states of 
the system under the special conditions imposed by the fixed values assigned to the 
two terminal spins in the cell of figure l ( a ) .  Indeed, it will appear as interfacial wetting 
transitions [ 151 that divide the commensurate phase into two distinct regions, namely, 
0 s  A S :  and ; < A S ! .  For O S A S :  we have the following asymptotic recursion 
relations for (2.10) and (2.11): 

2'- Zh (3.1) 

A ' -  A (3.2) 
where b is the scale factor ( 6  = 4  in our case). The Jacobian of these transformations 
is 

(3.3) 

In  other words, A is a marginal parameter, and we have a line ofjixed points for Z = 0 
and A E [0, $1. This line of fixed points seems to be due to the incomplete wetting in 
this part of the ferromagnetic phase. For a < A < f ,  the asymptotic recursion relations 
are. 

(3.4) 

(3.5) 
So the fixed point is located at (Z,A)=(O,a) and the associated Jacobian vanishes. 
Starting with a small 2, the line Z=O behaves as an attractor for A such that 

- Z!  - = b " 3  c o s i 2 r r ~ / 3 i - s 1 n 1 2 n A / 3 I )  

A ' = I  
4. 
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Figure 2. Renormalisation group flow diagram. P and L repectively denote the Potts and 
Lifshitz fixed points. At A = 0 the flow is that of the three-state Potts model. We see that 
the fixed point L governs the ferromagnetic-disordered phase transition for A f 0. Also, 
the fixed point at Z = O  and A = :  is an attractor for a special line (the wetting line). At 
the line Z = 0 we have a segment of fixed points for h E [0, a ] .  

30 
A 

Figure 3. Part of the phase diagram of the three-state chiral clock model. (P)  denotes the 
disordered, ( F )  the ferromagnetic and ( C )  the chiral phases. The ferromagnetic phase is 
itself divided, by the wetting line, into two regions, namely, the non-wetting ( N W )  and 
the wetting ( W )  ones. The boundary between paramagnetic and incommensurate or high 
commensurate phases ( 1 )  is indicated. 
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b ( f i  cos(2nA/3) -sin(2nA/3)) > 1 and as a repulsor otherwise. The complete renor- 
malisation group flow diagram is shown in figure 2. Figure 3 shows the critical line 
as well as the line corresponding to the wetting transition. We have two different 
reasons for believing that our RG formalism exactly locates the wetting line. The first 
reason is that this line ends at A = a  for T = 0 and this point is exactly the one obtained, 
for the square lattice, by Huse et a1 [ 151 for the wetting transition at T = 0. The second 
reason is that in our RG approach, which is exact for the hierarchical lattice shown in 
figure :, we are considering both the surface and bulk equilibrium thermodynamical 
properties of the model. 

4. Conclusion 

We have focused the criticality (phase diagram and thermal critical exponents) of the 
three-state chiral clock model in a suitable planar hierarchical lattice (see figure 1). 
To do this we have adopted a real space renormalisation group formalism which 
preserves the correlation function between two sites. 

We find that the chiral parameter A is relevant and  therefore any point of the 
ferromagnetic-disordered phase boundary with A # 0 is governed by a fixed point 
distinct from the pure Potts critical point. Therefore, we have a new ‘chiral’ universality 
class. Our results support the possibility of the Lifshiftz point which characterises this 
new universality class. Also, we calculate numerically the line of wetting transition 
resulting from the interface properties of the model. These novel interface features 
are detectable in our method due  the special conditions imposed on the two terminal 
spins in the cell. We believe that the various critical lines and points of the phase 
diagram are excellent approximations for the square lattice. In order to study the 
modulated phases we should consider the RG evolution of the wavevector q along the 
lines of reference [16]. 
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